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A method is described for computing the first and second derivatives with respect to the nonlinear
parameters of the energy expectation value in atomic and molecular calculations involving Slater-
type or Gauss-type orbitals. The approach is illustrated by computing the H atom 1s ground-state

wave function in terms of Gaussian orbitals.
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A great many calculations in atomic and molecular
physics involve the expansion of single-particle wave func-
tions in terms of Slater-type (STO) or Gaussian-type
(GTO) orbitals. These are functions of the form

Ys(r) =r"e Y (7), ) (1)

Pa(r) = r3e ™ Vi (7), (2)

respectively. The parameter « occurring in these func-
tions is usually referred to as a nonlinear or scaling pa-
rameter. Most such calculations involve computation and
diagonalization of the Hamiltonian matrix in a basis of
STO’s or GTO’s to find approximate energy eigenval-
ues for the ground state or some of the low-lying excited
states. These calculations, which are applying the so-
called Rayleigh-Ritz method, are variational in nature,
in that the coefficients for expanding the wave function
in terms of the basis orbitals can be viewed as the solu-
tion of the problem of minimizing the expectation value
of the Hamiltonian.

In such calculations, some attempt is also made to min-
imize the energy with respect to the nonlinear parame-
ters as well. The problem of minimizing with respect
to nonlinear parameters is, however, much more difficult
than the linear eigenvalue problem presented by the vari-
ational calculation for the expansion coefficients. In a re-
cent article Hill [1] has studied in detail the case in which
the basis functions are scaled by a single nonlinear pa-
rameter. In this work the dependence of the convergence
of the energy on increasing dimension of the basis set was
analyzed; from this an optimum value of the parameter
can be estimated.

There is a vast literature concerned with problems of
nonlinear optimization [2], and it is safe to say that there
is no single best way to approach these problems. How-
ever, it is surely true that the solution is greatly facili-
tated if the gradient vector of the derivatives of the ob-
ject function with respect to the nonlinear parameters
can be obtained explicitly, and even further facilitated if
the Hessian matrix of the second derivatives is known.

It seems rather surprising that the problem of finding
the derivatives of the eigenvalues of the Hamiltonian ma-
trix with respect to the nonlinear parameters in STO’s
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and GTO’s has not been addressed much earlier. This
contrasts with the problem of computing the derivatives
of molecular energies with respect to nuclear coordinates
which has been exhaustively studied. We have not, how-
ever, found such a discussion in the literature, and the
object of this note is to show that these derivatives can
be obtained in a fairly simple way.

In this discussion, we consider only the variational
problem for the single-particle Schrédinger equation.
The much more interesting cases are many-particle calcu-
lations, in particular Hartree-Fock molecular-orbital lin-
ear combinations of atomic orbitals (MO-LCAO) calcu-
lations, in which the elements of the Hamiltonian ma-
trix are quartic functionals of the basis orbitals. The
approach described here can also be used in such calcu-
lations, with some additional complications, and has in-
deed been used successfully in configuration-interaction
(CI) calculations for He-like ions using the Dirac Hamil-
tonian [3].

As an example, we take the problem of expanding the
hydrogenic ground-state wave function in GTO’s. The
variational problem is then to minimize the variational
functional

= [ |woer-wee] e @

subject to the condition

/0 ~ (r)ridr = 1. 4)

The wave function ¥(r) is to be approximated in the form

N

P(r) = cie (5)

=1

where the ¢; and «; are variational parameters. Solutions
for this problem were given many years ago by Huzinaga
[4] for N =1,2,...,10.

The variational problem can be expressed in general in
the form of the generalized eigenvalue problem

HX,; = AiBX,' (6)

where H is the Hamiltonian matrix with elements
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hi; = (| H|w;) (7)  gives the result
and B is the overlap matrix with elements 9 — . 0H — A 0B i (11)
dam, | B, *Oom | )
bij = (Yil¢;)- (8) , o ,
This relation is the same as first order perturbation the-
We view H and B as being functions of a set of N pa-  ory. It is also essentially the same as the Hellmann-
rameters Q. Feynman relation [5] although the context is different; in
Equation (6) has a set of N eigenvalues and eigenvec-  the Hellmann-Feynman relation the matrix is an operator
tors; the latter satisfy the orthogonality relation in Hilbert space depending on a physical parameter such
as an internuclear spacing or an electric field strength.
(%, Bx;) = 6. 9) Taking the inner product with x;, j # ¢, gives
(Matrix elements in the physical Hilbert space will be 9% 1 OH 8B
. . . _ 3 B 2 — i -\ i
denoted by the Dirac bracket notation, and in the N (XJ, Bam> X— A (x] [ da,, aam] x)

dimensional subspace by the standard linear algebra in-
ner product notation.) Differentiating Eq. (6) with re- (12)

spect to a parameter a,, gives the identity )
Again, this result is familiar from perturbation theory. If

Eq. (9) is differentiated with respect to o, in the case

; ; . = j, it is found that
(H-xB) Xy (OH 0B, _Ohp, ~ tTiitisfom
Oa, Oa,, Oa, Oa,y,
) Baxi __1 x; 8_Bx. (13)
(10) T 8am) T 2\ Bam )
Taking the inner product of Eq. (10) with respect to x; These results can be combined to give the expansion
J
N
6x,- 3)(,'
B, Z (x;‘,B—aa ) X;
i=1 m
1 oB OH oB
:—‘2‘ (xzaa )x1,+ Z X (xj,l:aam —/\iaam]xi) X;. (14)
J=1,j#1
Differentiating Eq. (11) with respect to a,, gives
9%\ 0°H 8’B ox; [ O0H OB } ) ON; ( oB )
— 7 = i — A; i 2 5 ——)\i— X; - | X, 7/ X; ] . 15
Bandoim ("“ [aanaam A Banaam] X )42\ Ban B B Ban \ X B, (15)

This can be reexpressed using Eq. (14) as
82 ) 0°H 8’B
5 = | %, -\ X;
da, O0a,, Oa, 0a, Oa, 0,

N
1 OH . OB OH oB '
DD vy ("f’ [aam - Aiaam] "f) ("J" [ﬁ - *’%] "l)

1

j=L,j#i
A; 0B OX; oB
T % ) - — [ x;, —x; ) - 16
Barn (x” Bt x‘) Bt ("“ Bon x’) (16)
[
In the example being considered in this article, each 8%h;; _ 82¢m i 58
orbital 1); is parametrized by a single parameter o;. The damBan, | % ) Simbmn
derivatives of a matrix element are therefore given by
< ”; o? 1/)M> 5.8
) inOmn

da,, J -+ <8_a: H 5‘&:’:> (6im6jm + ‘Sjmlsin)' (18)

S tives of the matrix elements can be calculated in the same
way as the original matrix elements simply by increasing
Similarly, the second derivatives are given by the index n by 1 or 2.

oY 8y Because of the nature of the basis functions, the deriva-
< '" |H|¢J> <¢1|H| ™) S (17
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If the energy functional were quadratic in the nonlinear
parameters, the energy minimum would be given by the
Newton formula

A(da) = -G (19)

where A is the Hessian matrix, d is the required incre-
ment in the nonlinear parameters, and G is the energy
gradient. In practice, however, the functional is much
more complicated and in most regions of the parame-
ter space the Hessian matrix appears not to be posi-
tive definite. This is the complicating feature of non-
linear optimization problems referred to above. We have
adopted the following strategy to deal with this problem.
At a particular parameter point a, the Hessian matrix is
transformed to principal axes, and the components of the
gradient in these coordinates are computed. The New-
ton equation is then solved only in the directions in which
the eigenvalues of A are positive, i.e., in the subspace in
which A is positive definite. This is readily done by com-
puting a “pseudoinverse” for A4 as

TABLE I. H atom ground-state energy (in Ry) computed
in a basis of GTO’s. The exact value is 1. Also given is ¢(0),
the value of the approximate solution at the nucleus; the exact
value is 2.

N a; Ci € ¥(0)
1 0.28294 0.980 14 -0.848 826 363 0.9801
2 0.20153 0.624 07
1.33250 0.859 81 -0.971625433 1.4836
3 0.15138 0.39712
0.681 29 0.77277
4.500 36 0.55016 -0.993 958 505 1.7200
4 0.12195 0.261 26
0.444 54 0.65791
1.962 26 0.57790
13.01070 0.34065 -0.998 556 811 1.8377
5 0.10307 0.17715
0.32723 0.549 87
1.164 66 0.57187
5.12357 0.387 36
34.061 34 0.21463 -0.999619 664 1.9009
6 0.089 97 0.12317
0.258 59 0.45591
0.80001 0.547 80
2.83305 0.415 46
12.45242 0.25593
82.92177 0.13869 -0.999 891 141 1.9370
7 0.080 32 0.087 44
0.21398 0.376 82
0.598 54 0.51387
1.84125 0.429 88
6.509 59 0.28795
28.605 31 0.17087
190.687 83 0.091 81 -0.999 966 596 1.9586
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_ 1
A5 =" —unf (20)
pi>o M
where p; and u; are the eigenvalues and eigenvectors of
the Hessian matrix. The solution of Eq. (19), which is
given by

sa=—3 S(u,Gu, (21)
pi>0
then gives a vector in the direction of the maximum rate
of decrease of the energy. If the parameter vector is close
to a minimum, A is positive definite, and iteration of
Eq. (19) gives a quadratically convergent search for the
minimum.

Because of the nonlinearity, success of this strategy is
not guaranteed. In particular, the Hessian matrix may
be close to being singular, in which case the parameter
increments may be very large. This can happen, for ex-
ample, at a step in which an eigenvalue of the Hessian
matrix changes from negative to positive. This problem
has been circumvented by limiting the maximum |§a; /a;|
to be 1/2 by scaling down da by the appropriate factor
if it exceeds 1/2. In addition, if at a particular step the
energy increases, the calculation returns to the previous
parameter set, and the parameter increments are halved.
With this strategy, the energy in the calculations con-
verged downwards, the parameters converged to a region
in which the Hessian matrix was positive definite, and
the convergence became quadratic. In the calculations
reported here, the final results were obtained in the or-
der of ten iterations.

Table [ shows the results of applying the minimization
procedure to the problem of solving the H atom ground
state in terms of GTO’s. The results are the same as
those of Huzinaga [4], apart from small differences in the
nonlinear parameters which probably arise because of a
less efficient search procedure in Huzinaga’s calculation.
Huzinaga refers to the possibility of multiple local min-
ima. We have seen no evidence for this in the present
calculations; in each case, the final results appear to be
independent of the initial parameter values.

In Table IT we show the results of the energy minimiza-
tion procedure for trial wave functions of the form

¥(r) = Py(z?)e™ " (22)

where Py is a polynomial of degree N and « is a single
scaling parameter. (This is the basis considered by Hill
[1].) The derivatives with respect to a can be obtained

TABLE II. H atom ground-state energy (in Ry) computed
in the basis given in Eq. (23).

N [o e

0 0.28294 -0.848 826 363
2 0.40172 -0.945279 354
4 0.48713 -0.973 215 341
6 0.55944 -0.984 582 831
8 0.624 59 -0.990 178 500
10 0.68507 -0.993 292 260
12 0.74218 -0.995 180 257
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immediately from the more general partial derivatives
given in Eqgs. (11) and (16). These results were obtained
generally in fewer than five iterations. The values ob-
tained for o agree with those given by Hill.

It is interesting to observe, as noted by Hill, that the
energy and the nonlinear parameter do not change when
N increases by 1 from an even value to an odd value;
therefore the results for odd values of N are not given.
The reason for this is as follows. If a normalized wave
function ¥ depends on a parameter «, it can be seen that

&y <§§|ﬁ|¢>, (23)

dy
da

Equations (7) and (8) show that at a minimum in «
the matrices H and B have zero matrix elements be-

¢> =0. (24)
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tween 9v/0a and the variational wave function, and that
adding 8 /Oa to the basis cannot affect the lowest eigen-
value. It is not hard to see that r2N+2e—er” ig a lin-
ear combination of 9¢/0a and 7‘2"6"0"”2, n=0,..,N.
Therefore adding it to the basis cannot change the result
since it is a linear combination of a function that cannot
change the result and functions that are already in the
basis.

It is also interesting to compare entries in the two ta-
bles. For a particular IV, each entry depends on 2N pa-
rameters. It is seen that far greater accuracy, at least in
the energy eigenvalue, is obtained from varying the non-
linear parameters than from increasing the dimension of
a polynomial basis. This observation appears to be a
well-known “folk theorem” in quantum chemistry.
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